next up previous contents
Next: InstallationRegistration, Questions Up: No Title Previous: Acknowledgments

References

Aha1992aha-noisy-instance-based Aha, D. W. 1992 , `Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms', International Journal of Man-Machine Studies 36(1), 267--287.

[Auer et al.]Auer, Holte \ Maass1995auer-holte-maass-T2 Auer, P., Holte, R. Maass, W. 1995 , Theory and applications of agnostic PAC-learning with small decision trees, in A. Prieditis S. Russell, eds, `Machine Learning: Proceedings of the Twelfth International Conference', Morgan Kaufmann Publishers, Inc.

Breiman1994breiman-bagging Breiman, L. 1994 , Bagging predictors, Technical Report Statistics Department, University of California at Berkeley.

[Breiman et al.]Breiman, Friedman, Olshen \ Stone1984cart Breiman, L., Friedman, J. H., Olshen, R. A. Stone, C. J. 1984 , Classification and Regression Trees, Wadsworth International Group.

Clark Boswell1991clark-boswell-cn2 Clark, P. Boswell, R. 1991 , Rule induction with CN2: Some recent improvements, in Y. Kodratoff, ed., `Proceedings of the fifth European conference (EWSL-91)', Springer Verlag, pp. 151--163.
http://www.cs.utexas.edu/users/pclark/papers/newcn.ps

Clark Niblett1989clark-niblett-cn2 Clark, P. Niblett, T. 1989 , `The CN2 induction algorithm', Machine Learning 3(4), 261--283.

Cost Salzberg1993cost-salzberg-pebls Cost, S. Salzberg, S. 1993 , `A weighted nearest neighbor algorithm for learning with symbolic features', Machine Learning 10(1), 57--78.

Devijver \ Kittler1982devijver-kittler-pattern-recognition Devijver, P. A. Kittler, J. 1982 , Pattern Recognition: A Statistical Approach, Prentice-Hall International.

[Dougherty et al.]Dougherty, Kohavi \ Sahami1995dougherty-kohavi-sahami-disc Dougherty, J., Kohavi, R. Sahami, M. 1995 , Supervised and unsupervised discretization of continuous features, in A. Prieditis S. Russell, eds, `Machine Learning: Proceedings of the Twelfth International Conference', Morgan Kaufmann, pp. 194--202.

Duda Hart1973duda-hart-classification Duda, R. Hart, P. 1973 , Pattern Classification and Scene Analysis, Wiley.

Efron Tibshirani1993efron-tibshirani-bootstrap Efron, B. Tibshirani, R. 1993 , An Introduction to the Bootstrap, Chapman & Hall.

Fayyad Irani1993fayyad-irani-disc Fayyad, U. M. Irani, K. B. 1993 , Multi-interval discretization of continuous-valued attributes for classification learning, in `Proceedings of the 13th International Joint Conference on Artificial Intelligence', Morgan Kaufmann Publishers, Inc., pp. 1022--1027.

Fisher1936fisher-iris Fisher, R. A. 1936 , `The use of multiple measurements in taxonomic problems', Annals of Eugenics 7(1), 179--188.

[Friedman et al.]Friedman, Kohavi \ Yun1996friedman-kohavi-yun-lazydt Friedman, J., Kohavi, R. Yun, Y. 1996 , Lazy decision trees, in `Proceedings of the Thirteenth National Conference on Artificial Intelligence', AAAI Press and the MIT Press, pp. 717--724.

[Geman et al.]Geman, Bienenstock \ Doursat1992geman-bienenstock-bias-variance Geman, S., Bienenstock, E. Doursat, R. 1992 , `Neural networks and the bias/variance dilemma', Neural Computation 4, 1--48.

Good1965good-est-prob Good, I. J. 1965 , The Estimation of Probabilities: An Essay on Modern Bayesian Methods, M.I.T. Press.

[Hertz et al.]Hertz, Krogh \ Palmer1991hertz-krogh-palmer Hertz, J., Krogh, A. Palmer, R. G. 1991 , Introduction to the Theory of Neural Computation, Addison Wesley.

Holte1993holte-simple Holte, R. C. 1993 , `Very simple classification rules perform well on most commonly used datasets', Machine Learning 11, 63--90.

[John et al.]John, Kohavi \ Pfleger1994john-kohavi-pfleger-irrelevance John, G., Kohavi, R. Pfleger, K. 1994 , Irrelevant features and the subset selection problem, in `Machine Learning: Proceedings of the Eleventh International Conference', Morgan Kaufmann, pp. 121--129.

Kohavi1994 akohavi-oodg-ecml Kohavi, R. 1994 a , Bottom-up induction of oblivious, read-once decision graphs, in F. Bergadano \ L. D. Raedt, eds, `Proceedings of the European Conference on Machine Learning', pp. 154--169.

Kohavi1994 bkohavi-oodg-aaai Kohavi, R. 1994 b , Bottom-up induction of oblivious, read-once decision graphs : strengths and limitations, in `Twelfth National Conference on Artificial Intelligence', pp. 613--618.

Kohavi1994 ckohavi-abstract-fss Kohavi, R. 1994 c , Feature subset selection as search with probabilistic estimates, in `AAAI Fall Symposium on Relevance', pp. 122--126.

Kohavi1995 akohavi-tables Kohavi, R. 1995 a , The power of decision tables, in N. Lavrac S. Wrobel, eds, `Proceedings of the European Conference on Machine Learning', Lecture Notes in Artificial Intelligence 914, Springer Verlag, Berlin, Heidelberg, New York, pp. 174--189.

Kohavi1995 bkohavi-accest Kohavi, R. 1995 b , A study of cross-validation and bootstrap for accuracy estimation and model selection, in C. S. Mellish, ed., `Proceedings of the 14th International Joint Conference on Artificial Intelligence', Morgan Kaufmann Publishers, Inc., pp. 1137--1143.

Kohavi1995 ckohavi-thesis Kohavi, R. 1995 c , Wrappers for Performance Enhancement and Oblivious Decision Graphs, PhD thesis, Stanford University, Computer Science department. STAN-CS-TR-95-1560,
ftp://starry.stanford.edu/pub/ronnyk/teza.ps.

Kohavi1996kohavi-nbtree Kohavi, R. 1996 , Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid, in `Proceedings of the Second International Conference on Knowledge Discovery and Data Mining', p. to appear.

Kohavi John1995kohavi-john-c45ap Kohavi, R. John, G. 1995 , Automatic parameter selection by minimizing estimated error, in A. Prieditis S. Russell, eds, `Machine Learning: Proceedings of the Twelfth International Conference', Morgan Kaufmann Publishers, Inc., pp. 304--312.

[Kohavi et al.]Kohavi, John, Long, Manley \ Pfleger1994mlc-old-intro Kohavi, R., John, G., Long, R., Manley, D. Pfleger, K. 1994 , MLC++: A machine learning library in C++, in `Tools with Artificial Intelligence', IEEE Computer Society Press, pp. 740--743. http://www.sgi.com/tech/mlc.

Kohavi Li1995kohavi-li-eodg Kohavi, R. Li, C.-H. 1995 , Oblivious decision trees, graphs, and top-down pruning, in C. S. Mellish, ed., `Proceedings of the 14th International Joint Conference on Artificial Intelligence', Morgan Kaufmann Publishers, Inc., pp. 1071--1077.

Kohavi \ Sommerfield1995kohavi-sommerfield-fss-compound Kohavi, R. Sommerfield, D. 1995 , Feature subset selection using the wrapper model: Overfitting and dynamic search space topology, in `The First International Conference on Knowledge Discovery and Data Mining', pp. 192--197.

[Kohavi et al.]Kohavi, Sommerfield \ Dougherty1996mlc-new-intro Kohavi, R., Sommerfield, D. Dougherty, J. 1996 , Data mining using MLC++: A machine learning library in C++, in `Tools with Artificial Intelligence', IEEE Computer Society Press, p. To Appear. http://www.sgi.com/tech/mlc.

Kohavi Wolpert1996kohavi-wolpert-bias-var Kohavi, R. Wolpert, D. H. 1996 , Bias plus variance decomposition for zero-one loss functions, in L. Saitta, ed., `Machine Learning: Proceedings of the Thirteenth International Conference', Morgan Kaufmann Publishers, Inc. Available at
http://robotics.stanford.edu/users/ronnyk.

Koutsofios North1994dot-user-man Koutsofios, E. North, S. C. 1994 , Drawing graphs with dot.
Available by anonymous ftp from research.att.com:dist/drawdag/dotdoc.ps.Z.

Krogh Vedelsby1995krogh-vedelsby-ensembles Krogh, A. Vedelsby, J. 1995 , Neural network ensembles, cross validation, and active learning, in `Advances in Neural Information Processing Systems', Vol. 7, MIT Press.

[Langley et al.]Langley, Iba \ Thompson1992langley-iba-avgcase-nb Langley, P., Iba, W. Thompson, K. 1992 , An analysis of bayesian classifiers, in `Proceedings of the tenth national conference on artificial intelligence', AAAI Press and MIT Press, pp. 223--228.

Langley Sage1994langley-sage-nb-fss Langley, P. Sage, S. 1994 , Induction of selective bayesian classifiers, in `Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence', Morgan Kaufmann Publishers, Inc., Seattle, WA, pp. 399--406.

[LeBlank et al.]LeBlank, Ward \ Wittels1990leblank-ward-wittels-dim-stacking LeBlank, J., Ward, M. Wittels, N. 1990 , Exploring n-dimensional databases, in `Proceedings of Visualization', pp. 230--237.

Littlestone1988littlestone-irrelevant Littlestone, N. 1988 , `Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm', Machine Learning 2, 285--318.

Maass1994maass-disc-colt Maass, W. 1994 , Efficient agnostic PAC-learning with simple hypotheses, in `Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory', pp. 67--75.

Michalski1978gld-michalski Michalski, R. S. 1978 , A planar geometric model for representing multidimensional discrete spaces and multiple-valued logic functions, Technical Report UIUCDCS-R-78-897, University of Illinois at Urbaba-Champaign.

[Murthy et al.]Murthy, Kasif \ Salzberg1994murthy-kasif-salzberg-oc1-journal Murthy, S. K., Kasif, S. Salzberg, S. 1994 , `A system for the induction of oblique decision trees', Journal of Artificial Intelligence Research 2, 1--33.

Quinlan1986quinlan-tdidt Quinlan, J. R. 1986 , `Induction of decision trees', Machine Learning 1, 81--106. Reprinted in Shavlik and Dietterich (eds.) Readings in Machine Learning.

Quinlan1993quinlan-c45 Quinlan, J. R. 1993 , C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, Inc., Los Altos, California.

Rice1988statistics-rice Rice, J. A. 1988 , Mathematical Statistics and Data Analysis, Wadsworth & Brooks/Cole.

Spector1994spector-splus Spector, P. 1994 , An Introduction to S and S-PLUS, Duxbury Press.

[Taylor et al.]Taylor, Michie \ Spiegalhalter1994statlog Taylor, C., Michie, D. Spiegalhalter, D. 1994 , Machine Learning, Neural and Statistical Classification, Paramount Publishing International.

Thrun 1991monks-problems-short Thrun 1991 , The Monk's problems: A performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University.

Weiss Kulikowski1991weiss-kulikowski-ml Weiss, S. M. Kulikowski, C. A. 1991 , Computer Systems that Learn, Morgan Kaufmann Publishers, Inc., San Mateo, CA.

Wettschereck1994wettschereck-thesis Wettschereck, D. 1994 , A Study of Distance-Based Machine Learning Algorithms, PhD thesis, Oregon State University.

Wnek Michalski1994wnek-michalski-aq17 Wnek, J. Michalski, R. S. 1994 , `Hypothesis-driven constructive induction in AQ17-HCI : A method and experiments', Machine Learning 14(2), 139--168.

[Wnek et al.]Wnek, Sarma, Wahab \ Michalski1990org-monk-diagrammatic Wnek, J., Sarma, J., Wahab, A. A. Michalski, R. S. 1990 , Comparing learning paradigms via diagrammatic visualization, in `Methodologies for Intelligent Systems, 5. Proceedings of the Fifth International Symposium', pp. 428--437. Also technical report MLI90-2, University of Illinois at Urbaba-Champaign.

Wolpert1992wolpert-NN-stacked Wolpert, D. H. 1992 , `Stacked generalization', Neural Networks 5, 241--259.



Ronny Kohavi
Sun Oct 6 23:17:50 PDT 1996